Exponents & Radicals

Given the expression x^n , x is called the **base** and n is called the **exponent** or **power**. Here are the laws of exponents you should know:

Law	Example
$x^1 = x$	$3^1 = 3$
$x^{0} = 1$	$3^0 = 1$
$x^m \cdot x^n = x^{m+n}$	$3^4 \cdot 3^5 = 3^9$
$\frac{x^m}{x^n} = x^{m-n}$	$\frac{3^7}{3^3} = 3^4$
$\left(x^{m}\right)^{n} = x^{mn}$	$(3^2)^4 = 3^8$
$(xy)^m = x^m y^m$	$(2\cdot 3)^3 = 2^3 \cdot 3^3$
$\left(\frac{x}{y}\right)^m = \frac{x^m}{y^m}$	$\left(\frac{2}{3}\right)^3 = \frac{2^3}{3^3}$
$x^{-m} = \frac{1}{x^m}$	$3^{-4} = \frac{1}{3^4}$

The difference between

$$(-3)^2$$
 and -3^2

comes down to order of operations (PEMDAS), which dictates that parentheses are prioritized first. So,

$$(-3)^2 = (-3) \cdot (-3) = 9$$

Without parentheses, exponents take priority:

 $-3^2 = -3 \cdot 3 = -9$

Notice that the negative is not applied until the exponent operation is carried through. Sometimes, the result turns out to be the same, as in:

$$(-2)^3$$
 and -2^3

Both yield -8.

EXAMPLE 1: Which of the following is equivalent to $-x^2(-x)^5$?

A) $-x^{10}$ B) $-x^7$ C) x^7 D) x^{10}

The $-x^2$ term cannot be simplified any further because the negative is not inside any parentheses. The $(-x)^5$ term has an odd exponent. An odd exponent yields an odd number of negative signs, which in turn yields a negative result. So, $(-x)^5$ simplifies to $-x^5$. The entire expression then boils down to

$$-x^{2}(-x)^{5} = -x^{2} \cdot -x^{5} = x^{2+5} = x^{7}$$

Answer (C).

EXAMPLE 2: Which expression is equivalent to $4^{x+1} \cdot 3^{2x}$, where x > 0?

A) $4(12)^x$ B) $4(24)^x$ C) $4(36)^x$ D) $8(12)^x$

We can use our laws of exponents to simplify the expression. First, the law $x^{m+n} = x^m \cdot x^n$ allows us to simplify 4^{x+1} to $4^x \cdot 4^1$. Then the law $x^{mn} = (x^m)^n$ allows us to turn 3^{2x} into $(3^2)^x = 9^x$. After applying these laws, we get

$$4^{x+1} \cdot 3^{2x} = 4^x \cdot 4^1 \cdot 9^x = 4 \cdot (4^x \cdot 9^x) = 4(36)^x$$

Answer (C). In the last step, we used the law $x^m y^m = (xy)^m$ to get $4^x \cdot 9^x = 36^x$.

Roots are the opposites of exponents. Whereas 5^2 will give you 25, the square root of 25, denoted by $\sqrt{25}$, will give you back the 5. Similarly, taking the cube root of 6^3 gives $\sqrt[3]{6^3} = 6$ and taking the fourth root of b^4 gives $\sqrt[4]{b^4} = b$. Notice how the operations cancel each other out.

Instead of using the radical sign, $\sqrt[n]{-}$, we can also denote the *n*th-root using the equivalent fractional exponent $\frac{1}{n}$. For example,

$$\sqrt{x} = x^{\frac{1}{2}}$$
$$\sqrt[3]{x} = x^{\frac{1}{3}}$$

What about $x^{\frac{2}{3}}$? The 2 on top means to square *x*. The 3 on the bottom means to cube root it:

$$\sqrt[3]{x^2}$$

We can see this more clearly if we break it down using our laws of exponents:

$$x^{\frac{2}{3}} = \left(x^2\right)^{\frac{1}{3}} = \sqrt[3]{x^2}$$

The order in which we do the squaring and the cube-rooting doesn't matter. We could've broken it down this way as well:

$$x^{\frac{2}{3}} = (x^{\frac{1}{3}})^2 = (\sqrt[3]{x})^2$$

You'll see $\sqrt[3]{x^2}$ more often than $(\sqrt[3]{x})^2$ because the outside cube root avoids the need for parentheses.

EXAMPLE 3: Which of the following is equivalent to $\sqrt[4]{x^5}$?

A) x B) $x^5 - x^4$ C) $x^{\frac{5}{4}}$ D) $x^{\frac{4}{5}}$

The fourth root equates to a fractional exponent of $\frac{1}{4}$, so

$$\sqrt[4]{x^5} = (x^5)^{\frac{1}{4}} = x^{\frac{5}{4}}$$

Answer (C)

EXAMPLE 4: The expression $\frac{25^{2x}}{(\sqrt{5})^x}$ is equivalent to 5^{kx} , where *k* is a constant. What is the value of *k*?

Because most of the laws of exponents involve terms with the same base, an often-used tactic is to convert each term to have the same base. Here, we're asked to simplify to 5^{kx} , so we should convert everything to have the same base of 5. As is common in this type of question, we see that we have a perfect square, 25, which can be written as 5^2 . In the denominator, we have $\sqrt{5}$, which can be written as $5^{\frac{1}{2}}$.

$$\frac{25^{2x}}{\left(\sqrt{5}\right)^x} = \frac{\left(5^2\right)^{2x}}{\left(5^{\frac{1}{2}}\right)^x} = \frac{5^{4x}}{5^{\frac{1}{2}x}} = 5^{4x - \frac{1}{2}x} = 5^{\frac{7}{2}x}$$

Therefore, $k = \frac{7}{2}$.

EXAMPLE 5: If the square of *a* is equal to the cube of *b*, where $a \ge 0$ and $b \ge 0$, for what value of *x* is $\sqrt{a^x}$ equal to *b*?

Essentially, we need to solve

 $\sqrt{a^x} = b$

for *x* given that $a^2 = b^3$. Let's first cube root both sides of $a^2 = b^3$ to isolate *b*:

$$a^{\frac{2}{3}} = \sqrt[3]{b^3}$$
$$a^{\frac{2}{3}} = b$$

Substituting $a^{\frac{4}{3}}$ for *b* in the equation above, we get

$$\sqrt{a^x} = a^{\frac{2}{3}}$$
$$a^{\frac{1}{2}x} = a^{\frac{2}{3}}$$

Since both sides have the same base of *a*, we can just equate the exponents and solve for *x*:

$$\frac{1}{2}x = \frac{2}{3}$$
$$x = \boxed{\frac{4}{3}}$$

The SAT will also test you on simplifying square roots (also called "surds"). To simplify a square root, factor the number inside the square root and take out any pairs:

$$\sqrt{48} = \sqrt{2 \cdot 2 \cdot 2 \cdot 2 \cdot 3} = \sqrt{\boxed{2 \cdot 2} \cdot \boxed{2 \cdot 2} \cdot 3} = 2 \cdot 2\sqrt{3} = 4\sqrt{3}$$

In the example above, we take a 2 out for the first $2 \cdot 2$. Then we take another 2 out for the second pair $2 \cdot 2$. Finally, we multiply the two 2's outside the square root to get 4 and leave the 3 inside. Of course, a quicker route would have been to break down 48 into bigger factor pairs:

$$\sqrt{48} = \sqrt{4 \cdot 4 \cdot 3} = 4\sqrt{3}$$

Here's another example:

$$\sqrt{72} = \sqrt{2 \cdot 2} \cdot \overline{3 \cdot 3} \cdot 2 = 2 \cdot 3\sqrt{2} = 6\sqrt{2}$$

To go backwards, take the number outside and put it back under the square root as a pair:

 $6\sqrt{2}=\sqrt{6\cdot 6\cdot 2}=\sqrt{72}$

To simplify a cube root such as $\sqrt[3]{16}$, take out any triplets:

$$\sqrt[3]{16} = \sqrt[3]{2 \cdot 2 \cdot 2} \cdot 2 = 2\sqrt[3]{2}$$

EXAMPLE 6: Which of the following is equivalent to $(x^2)^{\frac{3}{4}}$, where x > 0?

A)
$$\sqrt{x}$$
 B) $x\sqrt{x}$ C) $\sqrt[3]{x^2}$ D) $\sqrt[4]{x}$

Solution 1:

$$(x^2)^{\frac{3}{4}} = x^{(2 \cdot \frac{3}{4})} = x^{\frac{3}{2}} = \sqrt{x^3} = \sqrt{x \cdot x} = x\sqrt{x}$$

Answer (B).

Solution 2: Since $(x^2)^{\frac{3}{4}} = x^{(2\cdot\frac{3}{4})} = x^{\frac{3}{2}}$, we can compare this exponent of $\frac{3}{2}$ to the exponent of x in each of the answer choices.

Choice A: $\sqrt{x} = x^{\frac{1}{2}}$ Choice B: $x\sqrt{x} = x^{1} \cdot x^{\frac{1}{2}} = x^{(1+\frac{1}{2})} = x^{\frac{3}{2}}$ Choice C: $\sqrt[3]{x^{2}} = x^{\frac{2}{3}}$ Choice D: $\sqrt[4]{x} = x^{\frac{1}{4}}$ These results confirm that the answer is (B). **EXERCISE 1:** Evaluate WITHOUT a calculator. Answers for this exercise start on page 311.

1.
$$(-1)^{10}$$
7. -3^3 13. 3^{-2} 2. $(-1)^{15}$ 8. $-(-6)^2$ 14. $\left(\frac{1}{2}\right)^{-1}$ 3. $(-1)^8$ 9. $-(-4)^3$ 14. $\left(\frac{1}{2}\right)^{-1}$ 4. -1^8 10. $2^3 \times 3^2 \times (-1)^5$ 15. $\left(\frac{4}{3}\right)^{-2}$ 5. $-(-1)^8$ 11. 4^{-1} 12. 5^0

EXERCISE 2: Simplify so that your answer contains only positive exponents. The first one has been done for you. Answers for this exercise start on page 312.

1. $2k^{-4} \cdot 4k^2 = \frac{2 \cdot 4k^2}{k^4} = \frac{8}{k^2}$	7. $\frac{3x^4}{(x^{-2})^2}$	12. $\frac{(m^2 n)^3}{(mn^2)^2}$
$2. \ 3x^2 \cdot 2x^3$	8. $\frac{x^{\frac{3}{2}}}{x^{\frac{1}{2}}}$	13. $\frac{mn}{m^2n^3}$
3. $5x^4 \cdot 3x^{-2}$		k^{-2}
4. $7m^3 \cdot -3m^{-3}$	9. $(2m)^2 \cdot (3m^3)^2$	14. $\frac{k^{-2}}{k^{-3}}$
5. $(2x^2)^{-3}$		15. $\frac{x^2y^3z^4}{x^{-3}y^{-4}z^{-5}}$
6. $-3a^2b^{-3} \cdot 3a^{-5}b^8$	11. $(b^{-2})^{-3} \cdot (b^3)^2$	

EXERCISE 3: Simplify the radicals or solve for *x*. Answers for this exercise start on page 312.

1.
$$\sqrt{12}$$
5. $3\sqrt{75}$
9. $2\sqrt{2} = \sqrt{4x}$

2. $\sqrt{96}$
6. $\sqrt{32}$
10. $4\sqrt{6} = 2\sqrt{3x}$

3. $\sqrt{45}$
7. $5\sqrt{2} = \sqrt{x}$
11. $3\sqrt{8} = x\sqrt{2}$

4. $\sqrt{18}$
8. $3\sqrt{x} = \sqrt{45}$
12. $x\sqrt{x} = \sqrt{216}$

EXERCISE 4: Answers for this exercise start on page 313.

1

Which expression is equivalent to $(x^2y)(x^4y^{-3})$, where *x*, *y*, and *z* are positive numbers?

A)
$$x^6 y^{-3}$$

- B) $x^6 y^{-2}$
- C) x^8y^{-3}
- D) $x^8 y^{-2}$

2

Which of the following is equivalent to $\sqrt{\frac{x}{64}}$ for all x > 0?

3

Which expression is equivalent to $\frac{x^{\frac{5}{6}}}{\sqrt[3]{x}}$, where $x \neq 0$?

- A) $x^{\frac{1}{2}}$ B) $x^{\frac{5}{2}}$ C) $x^{\frac{2}{3}}$
- D) $x^{\frac{5}{3}}$

4

Which expression is equivalent to $b^{\frac{9}{7}}$, where b > 0?

- A) $\sqrt[15]{b^{105}}$
- B) $\sqrt[15]{b^{135}}$
- C) $\sqrt[105]{b^{135}}$
- D) $\sqrt[135]{b^{105}}$

5

Which expression represents the product of $(b^6c^{-2}d^{-5})$ and $(b^8c^{-3} + c^4d^5)$, where *b*, *c*, and *d* are positive?

A) $b^{14}c^{-5} + c^2d^{-10}$ B) $b^{14}c^{-5} + c^2$ C) $b^{14}c^{-5}d^{-5} + b^6c^2$ D) $b^{14}c^{-5}d^{-5} + c^2$

6

If $x \neq 0$ and $y \neq 0$, which of the following is equivalent to $\frac{8x^2}{\sqrt{4x^6y^4}}$? A) $2xy^{-2}$ B) $4x^{-2}y^2$ C) $4x^{-1}y^{-2}$ D) $4xy^2$

7

If *r* and *s* are positive, which of the following expressions is equivalent to $r^{\frac{6}{7}s^{\frac{3}{7}}}$?

A)
$$\frac{1}{\sqrt[6]{r^7 s^{14}}}$$

B) $\sqrt[6]{r^7 s^{14}}$

C)
$$\frac{1}{\sqrt[7]{r^6s^3}}$$

D) $\sqrt[7]{r^6s^3}$

8

 $\sqrt[b]{a} = \sqrt[d]{c}$

The given equation relates the distinct positive numbers *a*, *b*, *c*, and *d*. Which equation correctly expresses *c* in terms of *a*, *b*, and *d* ?

A) $c = \frac{d}{a^{\frac{1}{b}}}$ B) $c = a^{d-b}$ C) $c = a^{\frac{b}{d}}$ D) $c = a^{\frac{d}{b}}$

9

Which expression is equivalent to $\sqrt{16a^{\frac{4}{3}}}$, where a > 0?

A) $4a^{\frac{1}{3}}$

B) $4a^{\frac{4}{3}}$

- C) $8a^{\frac{1}{3}}$
- / ~ 4
- D) $8a^{\frac{4}{3}}$

10

Which expression is equivalent to $\sqrt{rs} (\sqrt{r} + \sqrt{s})$, where $r \ge 0$ and $s \ge 0$?

- A) $\sqrt{r^2s + rs^2}$ B) $r\sqrt{s} + s\sqrt{r}$
- C) $rs\sqrt{r+s}$
- D) $\sqrt{rs + r + s}$

11

The expression $\left(\sqrt[3]{x^2}\right)^n$, where *n* is a constant, is equivalent to x^8 . What is the value of *n* ?

12

Which expression is equivalent to $2^{-2k} \cdot 3^k$?

A) $(3\sqrt{2})^k$ B) $\left(\frac{1}{36}\right)^k$ C) $\left(\frac{3}{4}\right)^k$

D) $\left(\frac{9}{4}\right)^k$

13

Which expression is equivalent to $a^{\frac{2}{9}}(a^{\frac{2}{3}})^{\frac{2}{3}}$, where *a* is positive?

- A) $\sqrt[3]{a^2}$
- B) $\sqrt[3]{a^{16}}$
- C) $\sqrt[9]{a^8}$
- D) $\sqrt[9]{a^{14}}$

14
Which expression is equivalent to $\frac{4}{9}\left(\frac{2}{3}\right)^a$?
A) $\left(\frac{2}{3}\right)^{\frac{a}{2}}$
B) $\left(\frac{2}{3}\right)^{a-2}$
C) $\left(\frac{2}{3}\right)^{a+2}$
D) $\left(\frac{2}{3}\right)^{2a}$

15

$\sqrt[4]{x^3} \cdot \sqrt[12]{x^5}$

The given expression is equivalent to $\sqrt[m]{x^n}$, where *m* and *n* are positive constants each less than 10 and x > 1. What is the value of $\frac{m}{n}$?

16

Two numbers, *p* and *q*, are each greater than zero, and the square of *p* is equal to the cube root of *q*. For what value of *x* is p^{1-x} equal to the square root of *q*?

EXERCISE 5: Answers for this exercise start on page 314.

1

Which expression is equivalent to $\sqrt{100x^{36}}$?

- A) 10*x*⁶
- B) $50x^6$
- C) 10*x*¹⁸
- D) $50x^{18}$

2

If $(5^3)^{4k} = (5^{\frac{1}{3}})^{24}$, what is the value of <i>k</i> ?	
A) -6	
B) $\frac{2}{3}$	
C) $\frac{3}{4}$	
D) 2	

3

Which of the following is equivalent to $3y^{\frac{1}{2}}$ for all y > 0?

A) $\sqrt{3y}$ B) $\sqrt{9y}$ C) $\sqrt{\frac{3}{y}}$ D) $\sqrt{\frac{9}{y}}$

4

Which expression is equivalent to 4^{m+2} ?

- A) 16^{*m*}
- B) $16 + 4^m$
- C) 8(4^{*m*})
- D) $16(4^m)$

5

Which expression is equivalent to $\sqrt[4]{x^2y^4}$, where x > 0 and y > 0?

- A) \sqrt{xy}
- B) $y\sqrt{x}$
- C) $\frac{1}{x^2}$
- D) x^2y

6

Which expression is equivalent to $p^{\frac{1}{3}} \cdot (\sqrt[3]{p})^2$, where *p* is greater than 0?

- A) $p^{\frac{2}{3}}$
- B) $p^{\frac{2}{9}}$
- C) $p^{\frac{7}{3}}$
- D) p

7

Which expression is equivalent to $x^{\frac{2a}{b}}$ for all positive values of *x*, where *a* and *b* are positive integers?

- A) $\sqrt[b]{ax^2}$
- B) $\sqrt[b]{x^{2a}}$
- C) $\sqrt[b]{x^{a+2}}$
- D) $\sqrt[2a]{x^b}$

7

8

If
$$\frac{9'}{\sqrt[4]{9^{10}}} = 9^{6t}$$
, what is the value of t ?

9

Which expression is equivalent to $a^{\frac{3}{4}}b^{\frac{1}{2}}$, where $a \ge 0$ and $b \ge 0$?

- A) $\sqrt[4]{a^3b}$
- B) $\sqrt[4]{a^3b^2}$
- C) $\sqrt{a^3b}$
- D) $\sqrt{a^4b^2}$

10

Which expression is equivalent to $h^{\frac{5}{12}}(h^{-\frac{1}{4}})^{\frac{7}{3}}$, where h > 0 ?

A) $\frac{1}{h^6}$ B) $\sqrt{h^5}$ C) $\frac{1}{\sqrt[6]{h}}$

D) $\frac{1}{\sqrt[5]{h^2}}$

11

 $\sqrt[8]{41k} \left(\sqrt[9]{41k}\right)^{12}$

For what value of *x* is the given expression equivalent to $(41k)^{25x}$, where k > 1 ?

12

The expression 4^{18x} is equivalent to k^{3x} , where *k* is a constant. What is the value of *k* ?

13

Which expression is equivalent to $9^{\frac{1}{n}}(4^{\frac{1}{2n}})$, where *n* is a positive integer?

- A) $24^{\frac{1}{n}}$
- B) $12^{\frac{1}{n}}$
- C) $\sqrt[n]{18}$
- D) $\sqrt[n]{6}$

14

$$\frac{10\sqrt[6]{9^3x^{48}}}{\sqrt[4]{6^4x}}$$

The given expression is equivalent to ax^b , where a > 0, b > 0, and x > 1. What is the value of ab?

15

If *m* and *n* are both positive numbers, and 4m is equal to the cube root of the square of *n*, for what value of *x* is m^x equal to *n* when m = 2?

16

If $2^{x+3} - 2^x = k(2^x)$, what is the value of *k* ?

- A) 3
- B) 5
- C) 7
- D) 8