Exponents \& Radicals

Given the expression x^{n}, x is called the base and n is called the exponent or power. Here are the laws of exponents you should know:

Law	Example
$x^{1}=x$	$3^{1}=3$
$x^{0}=1$	$3^{0}=1$
$x^{m} \cdot x^{n}=x^{m+n}$	$3^{4} \cdot 3^{5}=3^{9}$
$\frac{x^{m}}{x^{n}}=x^{m-n}$	$3^{7}=3^{4}$
$\left(x^{m}\right)^{n}=x^{m n}$	$\left(3^{2}\right)^{4}=3^{8}$
$(x y)^{m}=x^{m} y^{m}$	$(2 \cdot 3)^{3}=2^{3} \cdot 3^{3}$
$\left(\frac{x}{y}\right)^{m}=\frac{x^{m}}{y^{m}}$	$\left(\frac{2}{3}\right)^{3}=\frac{2^{3}}{3^{3}}$
$x^{-m}=\frac{1}{x^{m}}$	$3^{-4}=\frac{1}{3^{4}}$

The difference between

$$
(-3)^{2} \text { and }-3^{2}
$$

comes down to order of operations (PEMDAS), which dictates that parentheses are prioritized first. So,

$$
(-3)^{2}=(-3) \cdot(-3)=9
$$

Without parentheses, exponents take priority:

$$
-3^{2}=-3 \cdot 3=-9
$$

Notice that the negative is not applied until the exponent operation is carried through.
Sometimes, the result turns out to be the same, as in:

$$
(-2)^{3} \text { and }-2^{3}
$$

Both yield -8 .

EXAMPLE 1: Which of the following is equivalent to $-x^{2}(-x)^{5}$?
A) $-x^{10}$
B) $-x^{7}$
C) x^{7}
D) x^{10}

The $-x^{2}$ term cannot be simplified any further because the negative is not inside any parentheses. The $(-x)^{5}$ term has an odd exponent. An odd exponent yields an odd number of negative signs, which in turn yields a negative result. So, $(-x)^{5}$ simplifies to $-x^{5}$. The entire expression then boils down to

$$
-x^{2}(-x)^{5}=-x^{2} \cdot-x^{5}=x^{2+5}=x^{7}
$$

Answer (C).

EXAMPLE 2: Which expression is equivalent to $4^{x+1} \cdot 3^{2 x}$, where $x>0$?
A) $4(12)^{x}$
B) $4(24)^{x}$
C) $4(36)^{x}$
D) $8(12)^{x}$

We can use our laws of exponents to simplify the expression. First, the law $x^{m+n}=x^{m} \cdot x^{n}$ allows us to simplify 4^{x+1} to $4^{x} \cdot 4^{1}$. Then the law $x^{m n}=\left(x^{m}\right)^{n}$ allows us to turn $3^{2 x}$ into $\left(3^{2}\right)^{x}=9^{x}$. After applying these laws, we get

$$
4^{x+1} \cdot 3^{2 x}=4^{x} \cdot 4^{1} \cdot 9^{x}=4 \cdot\left(4^{x} \cdot 9^{x}\right)=4(36)^{x}
$$

Answer (C). In the last step, we used the law $x^{m} y^{m}=(x y)^{m}$ to get $4^{x} \cdot 9^{x}=36^{x}$.

Roots are the opposites of exponents. Whereas 5^{2} will give you 25 , the square root of 25 , denoted by $\sqrt{25}$, will give you back the 5. Similarly, taking the cube root of 6^{3} gives $\sqrt[3]{6^{3}}=6$ and taking the fourth root of b^{4} gives $\sqrt[4]{b^{4}}=b$. Notice how the operations cancel each other out.

Instead of using the radical sign, $\sqrt[n]{ }$, we can also denote the n th-root using the equivalent fractional exponent $\frac{1}{n}$. For example,

$$
\begin{aligned}
& \sqrt{x}=x^{\frac{1}{2}} \\
& \sqrt[3]{x}=x^{\frac{1}{3}}
\end{aligned}
$$

What about $x^{\frac{2}{3}}$? The 2 on top means to square x. The 3 on the bottom means to cube root it:

$$
\sqrt[3]{x^{2}}
$$

We can see this more clearly if we break it down using our laws of exponents:

$$
x^{\frac{2}{3}}=\left(x^{2}\right)^{\frac{1}{3}}=\sqrt[3]{x^{2}}
$$

The order in which we do the squaring and the cube-rooting doesn't matter. We could've broken it down this way as well:

$$
x^{\frac{2}{3}}=\left(x^{\frac{1}{3}}\right)^{2}=(\sqrt[3]{x})^{2}
$$

You'll see $\sqrt[3]{x^{2}}$ more often than $(\sqrt[3]{x})^{2}$ because the outside cube root avoids the need for parentheses.

EXAMPLE 3: Which of the following is equivalent to $\sqrt[4]{x^{5}}$?
A) x
B) $x^{5}-x^{4}$
C) $x^{\frac{5}{4}}$
D) $x^{\frac{4}{5}}$

The fourth root equates to a fractional exponent of $\frac{1}{4}$, so

$$
\sqrt[4]{x^{5}}=\left(x^{5}\right)^{\frac{1}{4}}=x^{\frac{5}{4}}
$$

Answer (C).

EXAMPLE 4: The expression $\frac{25^{2 x}}{(\sqrt{5})^{x}}$ is equivalent to $5^{k x}$, where k is a constant. What is the value of k ?

Because most of the laws of exponents involve terms with the same base, an often-used tactic is to convert each term to have the same base. Here, we're asked to simplify to $5^{k x}$, so we should convert everything to have the same base of 5 . As is common in this type of question, we see that we have a perfect square, 25 , which can be written as 5^{2}. In the denominator, we have $\sqrt{5}$, which can be written as $5^{\frac{1}{2}}$.

$$
\frac{25^{2 x}}{(\sqrt{5})^{x}}=\frac{\left(5^{2}\right)^{2 x}}{\left(5^{\frac{1}{2}}\right)^{x}}=\frac{5^{4 x}}{5^{\frac{1}{2} x}}=5^{4 x-\frac{1}{2} x}=5^{\frac{7}{2} x}
$$

Therefore, $k=\frac{7}{2}$.

EXAMPLE 5: If the square of a is equal to the cube of b, where $a \geq 0$ and $b \geq 0$, for what value of x is $\sqrt{a^{x}}$ equal to b ?

Essentially, we need to solve

$$
\sqrt{a^{x}}=b
$$

for x given that $a^{2}=b^{3}$. Let's first cube root both sides of $a^{2}=b^{3}$ to isolate b :

$$
\begin{aligned}
\sqrt[3]{a^{2}} & =\sqrt[3]{b^{3}} \\
a^{\frac{2}{3}} & =b
\end{aligned}
$$

Substituting $a^{\frac{2}{3}}$ for b in the equation above, we get

$$
\begin{aligned}
\sqrt{a^{x}} & =a^{\frac{2}{3}} \\
a^{\frac{1}{2} x} & =a^{\frac{2}{3}}
\end{aligned}
$$

Since both sides have the same base of a, we can just equate the exponents and solve for x :

$$
\begin{aligned}
\frac{1}{2} x & =\frac{2}{3} \\
x & =\frac{4}{3}
\end{aligned}
$$

The SAT will also test you on simplifying square roots (also called "surds"). To simplify a square root, factor the number inside the square root and take out any pairs:

$$
\sqrt{48}=\sqrt{2 \cdot 2 \cdot 2 \cdot 2 \cdot 3}=\sqrt{2 \cdot 2 \cdot 2 \cdot 2 \cdot 3}=2 \cdot 2 \sqrt{3}=4 \sqrt{3}
$$

In the example above, we take a 2 out for the first $2 \cdot 2$. Then we take another 2 out for the second pair $2 \cdot 2$. Finally, we multiply the two 2's outside the square root to get 4 and leave the 3 inside. Of course, a quicker route would have been to break down 48 into bigger factor pairs:

$$
\sqrt{48}=\sqrt{4 \cdot 4} \cdot 3=4 \sqrt{3}
$$

Here's another example:

$$
\sqrt{72}=\sqrt{2 \cdot 2} \cdot \sqrt{3 \cdot 3} \cdot 2=2 \cdot 3 \sqrt{2}=6 \sqrt{2}
$$

To go backwards, take the number outside and put it back under the square root as a pair:

$$
6 \sqrt{2}=\sqrt{6 \cdot 6 \cdot 2}=\sqrt{72}
$$

To simplify a cube root such as $\sqrt[3]{16}$, take out any triplets:

$$
\sqrt[3]{16}=\sqrt[3]{2 \cdot 2 \cdot 2 \cdot 2}=2 \sqrt[3]{2}
$$

EXAMPLE 6: Which of the following is equivalent to $\left(x^{2}\right)^{\frac{3}{4}}$, where $x>0$?
A) \sqrt{x}
B) $x \sqrt{x}$
C) $\sqrt[3]{x^{2}}$
D) $\sqrt[4]{x}$

Solution 1:

$$
\left(x^{2}\right)^{\frac{3}{4}}=x^{\left(2 \cdot \frac{3}{4}\right)}=x^{\frac{3}{2}}=\sqrt{x^{3}}=\sqrt{x \cdot x \cdot x}=x \sqrt{x}
$$

Answer (B).
Solution 2: Since $\left(x^{2}\right)^{\frac{3}{4}}=x^{\left(2 \cdot \frac{3}{4}\right)}=x^{\frac{3}{2}}$, we can compare this exponent of $\frac{3}{2}$ to the exponent of x in each of the answer choices.
Choice A: $\quad \sqrt{x}=x^{\frac{1}{2}}$
Choice B: $\quad x \sqrt{x}=x^{1} \cdot x^{\frac{1}{2}}=x^{\left(1+\frac{1}{2}\right)}=x^{\frac{3}{2}}$
Choice C: $\quad \sqrt[3]{x^{2}}=x^{\frac{2}{3}}$
Choice D: $\quad \sqrt[4]{x}=x^{\frac{1}{4}}$
These results confirm that the answer is (B).

EXERCISE 1: Evaluate WITHOUT a calculator. Answers for this exercise start on page 311.

1. $(-1)^{10}$
2. $(-1)^{15}$
3. $(-1)^{8}$
4. -1^{8}
5. $-(-1)^{8}$
6. $(-3)^{3}$
7. -3^{3}
8. $-(-6)^{2}$
9. $-(-4)^{3}$
10. $2^{3} \times 3^{2} \times(-1)^{5}$
11. 4^{-1}
12. 5^{0}
13. 3^{-2}
14. $\left(\frac{1}{2}\right)^{-1}$
15. $\left(\frac{4}{3}\right)^{-2}$

EXERCISE 2: Simplify so that your answer contains only positive exponents. The first one has been done for you. Answers for this exercise start on page 312.

1. $2 k^{-4} \cdot 4 k^{2}=\frac{2 \cdot 4 k^{2}}{k^{4}}=\frac{8}{k^{2}}$
2. $3 x^{2} \cdot 2 x^{3}$
3. $5 x^{4} \cdot 3 x^{-2}$
4. $7 m^{3} \cdot-3 m^{-3}$
5. $\left(2 x^{2}\right)^{-3}$
6. $-3 a^{2} b^{-3} \cdot 3 a^{-5} b^{8}$
7. $\frac{3 x^{4}}{\left(x^{-2}\right)^{2}}$
8. $\frac{x^{\frac{3}{2}}}{x^{\frac{1}{2}}}$
9. $(2 m)^{2} \cdot\left(3 m^{3}\right)^{2}$
10. $\left(a^{-1} \cdot a^{-2}\right)^{2}$
11. $\left(b^{-2}\right)^{-3} \cdot\left(b^{3}\right)^{2}$
12. $\frac{\left(m^{2} n\right)^{3}}{\left(m n^{2}\right)^{2}}$
13. $\frac{m n}{m^{2} n^{3}}$
14. $\frac{k^{-2}}{k^{-3}}$
15. $\frac{x^{2} y^{3} z^{4}}{x^{-3} y^{-4} z^{-5}}$

EXERCISE 3: Simplify the radicals or solve for x. Answers for this exercise start on page 312.

1. $\sqrt{12}$
2. $\sqrt{96}$
3. $\sqrt{45}$
4. $\sqrt{18}$
5. $3 \sqrt{75}$
6. $\sqrt{32}$
7. $5 \sqrt{2}=\sqrt{x}$
8. $3 \sqrt{x}=\sqrt{45}$
9. $2 \sqrt{2}=\sqrt{4 x}$
10. $4 \sqrt{6}=2 \sqrt{3 x}$
11. $3 \sqrt{8}=x \sqrt{2}$
12. $x \sqrt{x}=\sqrt{216}$

EXERCISE 4: Answers for this exercise start on page 313.

1
Which expression is equivalent to $\left(x^{2} y\right)\left(x^{4} y^{-3}\right)$, where x, y, and z are positive numbers?
A) $x^{6} y^{-3}$
B) $x^{6} y^{-2}$
C) $x^{8} y^{-3}$
D) $x^{8} y^{-2}$

2

Which of the following is equivalent to $\sqrt{\frac{x}{64}}$ for all $x>0$?
A) $\frac{x^{2}}{8}$
B) $\frac{x^{2}}{32}$
C) $\frac{x^{\frac{1}{2}}}{8}$
D) $\frac{x^{\frac{1}{2}}}{32}$

3

Which expression is equivalent to $\frac{x^{\frac{5}{6}}}{\sqrt[3]{x}}$, where $x \neq 0 ?$
A) $x^{\frac{1}{2}}$
B) $x^{\frac{5}{2}}$
C) $x^{\frac{2}{3}}$
D) $x^{\frac{5}{3}}$

4
Which expression is equivalent to $b^{\frac{9}{7}}$, where $b>0$?
A) $\sqrt[15]{b^{105}}$
B) $\sqrt[15]{b^{135}}$
C) $\sqrt[105]{b^{135}}$
D) $\sqrt[135]{b^{105}}$

5

Which expression represents the product of $\left(b^{6} c^{-2} d^{-5}\right)$ and $\left(b^{8} c^{-3}+c^{4} d^{5}\right)$, where b, c, and d are positive?
A) $b^{14} c^{-5}+c^{2} d^{-10}$
B) $b^{14} c^{-5}+c^{2}$
C) $b^{14} c^{-5} d^{-5}+b^{6} c^{2}$
D) $b^{14} c^{-5} d^{-5}+c^{2}$

6

If $x \neq 0$ and $y \neq 0$, which of the following is equivalent to $\frac{8 x^{2}}{\sqrt{4 x^{6} y^{4}}}$?
A) $2 x y^{-2}$
B) $4 x^{-2} y^{2}$
C) $4 x^{-1} y^{-2}$
D) $4 x y^{2}$

7

If r and s are positive, which of the following expressions is equivalent to $r^{\frac{6}{7}} s^{\frac{3}{7}}$?
A) $\frac{1}{\sqrt[6]{r^{7} s^{14}}}$
B) $\sqrt[6]{r^{7} s^{14}}$
C) $\frac{1}{\sqrt[7]{r^{6} s^{3}}}$
D) $\sqrt[7]{r^{6} s^{3}}$

8

$$
\sqrt[b]{a}=\sqrt[d]{c}
$$

The given equation relates the distinct positive numbers a, b, c, and d. Which equation correctly expresses c in terms of a, b, and d ?
A) $c=\frac{d}{a^{\frac{1}{b}}}$
B) $c=a^{d-b}$
C) $c=a^{\frac{b}{d}}$
D) $c=a^{\frac{d}{b}}$

9

Which expression is equivalent to $\sqrt{16 a^{\frac{2}{3}}}$, where $a>0$?
A) $4 a^{\frac{1}{3}}$
B) $4 a^{\frac{4}{3}}$
C) $8 a^{\frac{1}{3}}$
D) $8 a^{\frac{4}{3}}$

10

Which expression is equivalent to $\sqrt{r s}(\sqrt{r}+\sqrt{s})$, where $r \geq 0$ and $s \geq 0$?
A) $\sqrt{r^{2} s+r s^{2}}$
B) $r \sqrt{s}+s \sqrt{r}$
C) $r s \sqrt{r+s}$
D) $\sqrt{r s+r+s}$

11

The expression $\left(\sqrt[3]{x^{2}}\right)^{n}$, where n is a constant, is equivalent to x^{8}. What is the value of n ?

12
Which expression is equivalent to $2^{-2 k} \cdot 3^{k}$?
A) $(3 \sqrt{2})^{k}$
B) $\left(\frac{1}{36}\right)^{k}$
C) $\left(\frac{3}{4}\right)^{k}$
D) $\left(\frac{9}{4}\right)^{k}$

13

Which expression is equivalent to $a^{\frac{2}{9}}\left(a^{\frac{2}{3}}\right)^{\frac{2}{3}}$, where a is positive?
A) $\sqrt[3]{a^{2}}$
B) $\sqrt[3]{a^{16}}$
C) $\sqrt[9]{a^{8}}$
D) $\sqrt[9]{a^{14}}$

14

Which expression is equivalent to $\frac{4}{9}\left(\frac{2}{3}\right)^{a}$?
A) $\left(\frac{2}{3}\right)^{\frac{a}{2}}$
B) $\left(\frac{2}{3}\right)^{a-2}$
C) $\left(\frac{2}{3}\right)^{a+2}$
D) $\left(\frac{2}{3}\right)^{2 a}$

15

$$
\sqrt[4]{x^{3}} \cdot \sqrt[12]{x^{5}}
$$

The given expression is equivalent to $\sqrt[m]{x^{n}}$, where m and n are positive constants each less than 10 and $x>1$. What is the value of $\frac{m}{n}$?

16

Two numbers, p and q, are each greater than zero, and the square of p is equal to the cube root of q. For what value of x is p^{1-x} equal to the square root of q ?

EXERCISE 5: Answers for this exercise start on page 314.

1
Which expression is equivalent to $\sqrt{100 x^{36}}$?
A) $10 x^{6}$
B) $50 x^{6}$
C) $10 x^{18}$
D) $50 x^{18}$

2

If $\left(5^{3}\right)^{4 k}=\left(5^{\frac{1}{3}}\right)^{24}$, what is the value of $k ?$
A) -6
B) $\frac{2}{3}$
C) $\frac{3}{4}$
D) 2

3

Which of the following is equivalent to $3 y^{\frac{1}{2}}$ for all $y>0$?
A) $\sqrt{3 y}$
B) $\sqrt{9 y}$
C) $\sqrt{\frac{3}{y}}$
D) $\sqrt{\frac{9}{y}}$

4
Which expression is equivalent to 4^{m+2} ?
A) 16^{m}
B) $16+4^{m}$
C) $8\left(4^{m}\right)$
D) $16\left(4^{m}\right)$

5
Which expression is equivalent to $\sqrt[4]{x^{2} y^{4}}$, where $x>0$ and $y>0$?
A) $\sqrt{x y}$
B) $y \sqrt{x}$
C) $\frac{1}{x^{2}}$
D) $x^{2} y$

6
Which expression is equivalent to $p^{\frac{1}{3}} \cdot(\sqrt[3]{p})^{2}$, where p is greater than 0 ?
A) $p^{\frac{2}{3}}$
B) $p^{\frac{2}{9}}$
C) $p^{\frac{7}{3}}$
D) p

7
Which expression is equivalent to $x^{\frac{2 a}{b}}$ for all positive values of x, where a and b are positive integers?
A) $\sqrt[b]{a x^{2}}$
B) $\sqrt[b]{x^{2 a}}$
C) $\sqrt[b]{x^{a+2}}$
D) $\sqrt[2 a]{x^{b}}$

8
If $\frac{9^{7}}{\sqrt[4]{9^{10}}}=9^{6 t}$, what is the value of $t ?$

9
Which expression is equivalent to $a^{\frac{3}{4}} b^{\frac{1}{2}}$, where $a \geq 0$ and $b \geq 0$?
A) $\sqrt[4]{a^{3} b}$
B) $\sqrt[4]{a^{3} b^{2}}$
C) $\sqrt{a^{3} b}$
D) $\sqrt{a^{4} b^{2}}$

10

Which expression is equivalent to $h^{\frac{5}{12}}\left(h^{-\frac{1}{4}}\right)^{\frac{7}{3}}$, where $h>0$?
A) $\frac{1}{h^{6}}$
B) $\sqrt{h^{5}}$
C) $\frac{1}{\sqrt[6]{h}}$
D) $\frac{1}{\sqrt[5]{h^{2}}}$

11

$$
\sqrt[8]{41 k}(\sqrt[9]{41 k})^{12}
$$

For what value of x is the given expression equivalent to $(41 k)^{25 x}$, where $k>1$?

12

The expression $4^{18 x}$ is equivalent to $k^{3 x}$, where k is a constant. What is the value of k ?

13

Which expression is equivalent to $9^{\frac{1}{n}}\left(4^{\frac{1}{2 n}}\right)$, where n is a positive integer?
A) $24^{\frac{1}{n}}$
B) $12^{\frac{1}{n}}$
C) $\sqrt[n]{18}$
D) $\sqrt[n]{6}$

14

$$
\frac{10 \sqrt[6]{9^{3} x^{48}}}{\sqrt[4]{6^{4} x}}
$$

The given expression is equivalent to $a x^{b}$, where $a>0, b>0$, and $x>1$. What is the value of $a b$?

15

If m and n are both positive numbers, and $4 m$ is equal to the cube root of the square of n, for what value of x is m^{x} equal to n when $m=2$?

16

If $2^{x+3}-2^{x}=k\left(2^{x}\right)$, what is the value of k ?
A) 3
B) 5
C) 7
D) 8

