Exercise 4: Expressions

1. $B b^{2}-8 b+16=(b-4)(b-4)=(b-4)^{2}$
2. D $a(b+c)+b(a+c)+c(a+b)=a b+a c+a b+b c+a c+b c=2 a b+2 b c+2 a c$
3. $A-x^{2} y-x y^{2}=-x y(x+y)$
4. $C(3 a-4 b)(5 b+2 a)=15 a b+6 a^{2}-20 b^{2}-8 a b=6 a^{2}+7 a b-20 b^{2}$
5. E It takes $\frac{4}{3}$ cups of water to make 1 pizza, so $\frac{4}{3} x$ cups of water are required to make x pizzas. It takes $\frac{5}{4}$ cups of water to make 1 cake, so $\frac{5}{4} y$ cups of water are required to make y cakes. The total number of cups of water required to make everything is $\frac{4}{3} x+\frac{5}{4} y$.
6. $C 4 x^{2}+2 x-6=2\left(2 x^{2}+x-3\right)=2(x-1)(2 x+3)$
7. $D(x+2)^{2}-4 x-5=(x+2)(x+2)-4 x-5=\left(x^{2}+2 x+2 x+4\right)-4 x-5=x^{2}-1=(x+1)(x-1)$
8. A $\frac{(x+4)^{2}}{x^{2}-16}=\frac{(x+4)^{2}}{(x+4)(x-4)}=\frac{x+4}{x-4}$
9. D Factoring the denominators, we get $\frac{1}{3(x-2)}+\frac{1}{2(x-2)^{2}}$. The two fractions have a $(x-2)$ in common but because the second fraction has two of them, $(x-2)^{2}$, we'll need two in our least common denominator. When things are in common, you go with the highest power. We'll also need one factor of " 3 " and one factor of " 2 ". Putting everything together, our least common denominator is $3 \cdot 2 \cdot(x-2)^{2}=$ $6(x-2)^{2}$.
10. E The x burgers cost $b x$ dollars. The total number of additional condiments is $x y$ and they cost a total of $c x y$ dollars. Altogether, Michael's order cost $b x+c x y$ dollars. Finally, the change he gets back is $30-(b x+c x y)$.
