Chapter 25: Logarithms

- 1. D By the definition of a log, $\log_4 x = 3$ is equivalent to $4^3 = x$. Therefore, x = 64.
- 2. D By the definition of a log, $5^a = 3$ and $5^b = 4$. Multiplying both equations, we get

$$5^a \cdot 5^b = 3 \cdot 4$$
$$5^{a+b} = 12$$

- 3. *E* By the definition of a log, $c^{\frac{1}{2}} = 9$. Squaring both sides, c = 81.
- 4. C By the definition of a log, $5^x = 4$. Now,

$$5^{2-x} = 5^2 \cdot 5^{-x} = \frac{5^2}{5^x} = \frac{25}{4}$$

5. *A*

$$\log_3 x^2 = c$$
$$2\log_3 x = c$$
$$\log_3 x = \frac{c}{2}$$

6. B log₂ 63 = log₂(7 ⋅ 3²) = log₂ 7 + log₂ 3² = log₂ 7 + 2 log₂ 3 = p + 2q
7. C log ((3x)²) = 2 log(3x) = 2(log 3 + log x) = 2 log 3 + 2 log x.
8. D By the definition of a log, x = log_a b and y = log_a c. Therefore, xy = (log_a b)(log_a c).
9. A

$$log_{4}(x+3) + log_{4}(x-3) = 2$$
$$log_{4}((x+3)(x-3)) = 2$$
$$(x+3)(x-3) = 4^{2}$$
$$x^{2} - 9 = 16$$
$$x^{2} = 25$$
$$x = 5$$

10. *A*

$$\log_b 40 - \log_b 5 = 3$$
$$\log_b 8 = 3$$
$$b^3 = 8$$
$$b = \sqrt[3]{8} = 2$$