Chapter 25: Logarithms

1. D By the definition of a $\log , \log _{4} x=3$ is equivalent to $4^{3}=x$. Therefore, $x=64$.
2. D By the definition of a $\log , 5^{a}=3$ and $5^{b}=4$. Multiplying both equations, we get

$$
\begin{aligned}
5^{a} \cdot 5^{b} & =3 \cdot 4 \\
5^{a+b} & =12
\end{aligned}
$$

3. E By the definition of a $\log , c^{\frac{1}{2}}=9$. Squaring both sides, $c=81$.
4. C By the definition of a $\log , 5^{x}=4$. Now,

$$
5^{2-x}=5^{2} \cdot 5^{-x}=\frac{5^{2}}{5^{x}}=\frac{25}{4}
$$

5. A

$$
\begin{aligned}
\log _{3} x^{2} & =c \\
2 \log _{3} x & =c \\
\log _{3} x & =\frac{c}{2}
\end{aligned}
$$

6. B $\log _{2} 63=\log _{2}\left(7 \cdot 3^{2}\right)=\log _{2} 7+\log _{2} 3^{2}=\log _{2} 7+2 \log _{2} 3=p+2 q$
7. C $\log \left((3 x)^{2}\right)=2 \log (3 x)=2(\log 3+\log x)=2 \log 3+2 \log x$.
8. D By the definition of a $\log , x=\log _{a} b$ and $y=\log _{a} c$. Therefore, $x y=\left(\log _{a} b\right)\left(\log _{a} c\right)$.
9. A

$$
\begin{aligned}
\log _{4}(x+3)+\log _{4}(x-3) & =2 \\
\log _{4}((x+3)(x-3)) & =2 \\
(x+3)(x-3) & =4^{2} \\
x^{2}-9 & =16 \\
x^{2} & =25 \\
x & =5
\end{aligned}
$$

10. A

$$
\begin{aligned}
\log _{b} 40-\log _{b} 5 & =3 \\
\log _{b} 8 & =3 \\
b^{3} & =8 \\
b & =\sqrt[3]{8}=2
\end{aligned}
$$

